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Abstract 

This paper presents a new force method to predict the structural response of statically and 

kinematically indeterminate systems that can be stabilized through prestress, i.e. prestress-

stable structures. This new force method, here named Extended Integrated Force Method 

(IFME), extends the existing Integrated Force Method (IFM) which is only applicable to the 

analysis of kinematically determinate systems. The product force concept is adopted and 

incorporated into the IFME to model the effect of infinitesimal mechanisms. This makes the 

IFME capable of dealing with cases in which the external loads contain components that 

cannot be taken by the system in its initial configuration. As the original IFM, the IFME 

bypasses the well-known concept of redundant forces and basis determinant structure of the 

Standard Force Method (SFM) by taking the internal forces as the independent variables 

which are obtained simultaneously. A proof is provided to show that, when the product force 

is not included in the formulation, the IFME reduces to the IFM for kinematically 

determinate systems and it also reduces to another force method based on singular value 

decomposition of the equilibrium matrix which is here named SVD-FM. Compared to the 

better known Displacement Method (DM), the IFME is a suitable alternative and it offers a 

deeper insight into the structure response which is decoupled into an extensional and an 

inextensional part for prestress-stable kinematically indeterminate systems. Numerical 

examples are carried out to test accuracy and effectiveness of the IFME on kinematically 

indeterminate structures with multiple self-stress states and mechanism modes. Application 

of the IFME to active structural control of kinematically indeterminate systems is also 

discussed through a numerical example.  

Keywords: Force Method; Integrated Force Method; Prestress-stable; Kinematically 

Indeterminate Systems; Active structural control  
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1 Introduction 

The behavior of a reticular structural system can be characterized by two key parameters [1]: 

the number of zero-energy deformation modes, or mechanisms, denoted by m; and the 

number of self-stress states, denoted by s. Structural systems can be classified into four types 

based on m and s: (1) statically determinate and kinematically determinate (s = 0, m = 0); (2) 

statically indeterminate and kinematically determinate (s > 0, m = 0); (3) statically 

determinate and kinematically indeterminate (s = 0, m > 0); (4) statically indeterminate and 

kinematically indeterminate (s > 0, m > 0). Most engineering structures fall into the first two 

types, i.e. kinematically determinate systems. 

Although most engineering structures are kinematically determinate systems, kinematically 

indeterminate systems are not uncommon and have been applied in civil engineering in the 

form of cable domes [2, 3, 4], cable nets [5, 6, 7] and tensegrity structures [8, 9, 10]. These 

structures fall into the fourth category type, i.e. statically indeterminate and kinematically 

indeterminate systems. The existence of kinematic indeterminacy makes the analysis of the 

structural response more challenging because the displacements cannot be uniquely 

determined solely through equilibrium and compatibility conditions. Due to the presence of 

mechanisms, it is possible that the external load might contain components that cannot be 

equilibrated by the structure in its initial configuration. This occurs when load components lie 

in the left-null space of the equilibrium matrix which is spanned by the mechanism basis. In 

these cases, the equilibrium equations admit no solution. 

Mechanisms can be distinguished into two main types: infinitesimal and finite mechanisms. It 

is well known that the only way a state of self-stress can impart first order stiffness to an 

inextensional mechanism is due to a second order change of strain energy caused by second 

order deformations of the structure elements [11, 12]. In this case, the change of geometry 

caused by the inextensional mechanism, can enable the pre-stressed elements to balance the 

external load that excites the mechanism. Therefore, prestress can be appropriately assigned 

to stabilize first-order infinitesimal mechanisms but not higher order or finite mechanisms. 

Kinematically indeterminate systems containing only first-order infinitesimal mechanisms 

that can be stabilized through prestress are usually referred as ‘prestress-stable’ [13]. 

Methods to evaluate whether a kinematically indeterminate system is prestress-stable have 

been proposed, among others, by Calladine and Pellegrino [14], Kuznetsov [15] and Tarnai 

and Szabo [16]. 
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In [14], the main criterion to assess prestress stability was based on the effect of self-stress on 

the stiffness of the mechanism through the so-called ‘product forces’ which arise at the joints 

when a mechanism is excited. Through appropriate prestress, the product forces can 

equilibrate the load that has excited the mechanism, which otherwise could not be taken by 

the structure in its original configuration. In [15], another prestress stability criterion was 

formulated based on kinematic constraint functions and virtual displacements. Tarnai and 

Szabo [16] unified and proved equivalence of the prestress stability criteria given in [14] and 

[15] through the formulation of a more general theory based on stationarity of the Hellinger-

Reissner variational principle.  

As shown by Tarnai and Szabo [16], Calladine and Pellegrino [14] and Kuznetsov [15] arrive 

to the identical conclusion that if a state of self-stress or combination of multiple states (when 

they exist) can impart positive stiffness to all mechanisms in the assembly, then the 

mechanisms are first-order infinitesimal and the structure can be stabilized through prestress. 

This criterion involves to verify the positive definiteness of a quadratic form which contains 

the mechanisms modes, and the self-stress states. Although the works in [14, 15, 16] gave 

general criteria for prestress stability, they did not offer a general and efficient numerical 

procedure to obtain an appropriate prestress when the structure has multiple self-stress states. 

The task is to obtain a suitable combination of the self-stress states subject to appropriate 

constraints including the positive definiteness of any of the quadratic forms given in [14, 15, 

16]. This task has been formulated through optimization procedures based on genetic 

algorithm [17], simulating annealing [18], ant colony algorithm [19], and semidefinite 

programming [20], which have adopted the criterion given in [14].  

Once prestress stability condition is met and as a result an appropriate prestress is 

determined, a suitable method is needed to analyze the structural response under external 

loads. Structural analysis methods can be generally divided into two categories: displacement 

method (DM) (or stiffness method) and force method (FM) (or flexibility method). Within a 

Finite Element formulation, a structure is modelled as a mesh of elements connected at nodes. 

Both methods consider equilibrium and compatibility conditions. DM has been extensively 

used in structural analysis. The primal unknown variables are the node displacements. The 

so-called structure tangent stiffness consists of material and geometric stiffness. The material 

stiffness incorporates equilibrium and compatibility conditions for the structure in its initial 

unstressed configuration (i.e. it is assumed that the load does not cause a significant change 

of the geometry) while the geometric stiffness is employed to account for the stiffness caused 
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by a change of orientation of the stressed elements [21]. In FM, the primal unknown variables 

are the element forces. There are three main force method formulations: Standard Force 

Method (SFM) [22, 23, 24], Integrated Force Method (IFM) [25, 26, 27], and a Force Method 

based on Singular Value Decomposition [28] which is referred as SVD-FM in this paper.  

For statically determinate structures, equilibrium conditions are sufficient to compute the 

unknown element forces. For statically indeterminate structures, equilibrium conditions are 

not sufficient to determine a unique solution because of the existence of redundant elements. 

Therefore, equilibrium conditions must be augmented by compatibility conditions. In the 

SFM, a statically indeterminate and kinematically determinate structure is first subdivided 

into a statically determinate basis structure and some redundant members. The element forces 

in the determinate basis structure can be obtained directly through equilibrium conditions; 

then the redundant forces are obtained through a back-substitution through compatibility 

conditions. This procedure was originally developed by Navier [29] to analyze statically 

indeterminate and kinematically determinate trusses.  

The IFM was first proposed by Patnaik [25] for static analysis and it was subsequently 

developed further to address various analysis including stability [30] and structural dynamics 

[31]. In addition, it has been employed in structural optimization [32, 33] and integrated 

structure-control design [34]. Different to the SFM, the IFM combines equilibrium and 

compatibility into a single matrix statement thus allowing to compute the element forces 

directly without the need to choose any determinate basis structure nor redundant members. 

This is a significant advantage with respect to the SFM which can be thought of as derived 

from the IFM [30]. However, in its current form, the IFM cannot be applied to the analysis of 

structures with kinematic indeterminacies because it does not account for the change of 

stiffness caused by prestress and therefore it cannot compute the effect of mechanisms on 

forces and displacements in prestress-stable configurations. 

Another force method, which was first formulated in [12, 28], is based on Singular Value 

Decomposition (SVD) of the equilibrium conditions in matrix form. For brevity, this method 

is referred here as SVD-FM. Appendix A.1 gives the key equations of this method. In the 

SVD-FM, the equilibrium matrix is decomposed through SVD into submatrices which 

contain complete information regarding static and kinematic properties including self-stress 

states and mechanism modes. Element forces and node displacements can be computed by 

combining these submatrices together with compatibility conditions. That being said, the 
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SVD-FM cannot be used to compute forces and displacements for kinematically 

indeterminate systems when the load lies in the left-null space of the equilibrium matrix i.e. 

when the load cannot be taken by the structure in its initial configuration because it excites 

one or more mechanisms. 

Pellegrino [35] formulated a method to analyze reticular structures with kinematic 

indeterminacies by extending the SFM with the ‘product force’ or ‘geometric load’ method. 

The product force offers a way to compute the stiffness of a first-order infinitesimal 

mechanism which is developed as the mechanism is actuated and it results from application 

of prestress [36, 37]. By combining the product force matrix and the column space of the 

equilibrium matrix, a new equilibrium matrix was constructed; then a similar procedure as in 

the SFM was carried out to compute the element forces and nodal displacements. Although 

this method can be used to predict the structural response of prestress-stable statically and 

kinematically indeterminate systems, since they are based on the SFM, automation through 

software implementation is cumbersome and do not generalize well. 

Reksowardojo and Senatore [38] proved that the SVD-FM and IFM are identical for 

kinematically determinate systems. Part of the conclusions in [38] is that the SVD-FM has 

generally a lower degree of computational complexity with respect to the IFM, the more so as 

the structure static indeterminacy increases. However, the IFM has a more intuitive 

formulation that is preferable pedagogically and it is of value for future extensions to 

kinematically indeterminate configurations and to geometric non-linear cases.  

This work extends the original IFM [25] by adopting the product force concept from [14] in 

order to formulate a new force method which is here named Extended Integrated Force 

Method (IFME). The IFME not only inherits the advantages of the IFM over the SFM but it 

is also able to predict the response of prestress-stable kinematically indeterminate structures. 

Since the analysis of kinematically indeterminate structures is entwined with the evaluation 

of prestress stability, a new general formulation is included in the IFME to compute an 

appropriate prestress that can stabilize the structure. This formulation, which is based on 

semidefinite programming, is new with respect to previous works [17, 18, 19, 20] because it 

allows to obtain simultaneously the prestress as well as the initial element deformations that 

induce the required prestress. The initial element deformations are usually thought of as 

caused by a lack of fit and have been referred as eigenstrain [39]. In this work instead, 

prestress and corresponding eigenstrain are both design variables, which gives important 
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insights into feasibility and constructability of a prestress-stable kinematically indeterminate 

structure. In addition, in case the structure is equipped with an active control system, it is 

shown that the IFME can be used as a convenient analysis tool to model the effect of 

actuation in kinematically indeterminate structures including the initial actuator length 

changes (i.e. eigenstrain) to stabilize the system (Section 6). 

For simplicity, only pin-jointed systems are considered. It is assumed that each structural 

element can take both tension and compression. In addition, the following points need to be 

mentioned: 

(1) The analysis is carried within the assumption of small strains and small 

displacements; 

(2) Mechanisms are inextensional in the sense that they are assumed to cause no first-

order deformations. However, if second-order deformation occur, they are ignored 

due to assumption (1); 

(3) The IFME is able to compute the structural response of a prestress-stable 

kinematically indeterminate structural system. That is, all mechanisms shall be first-

order infinitesimal mechanisms so that they can be stabilized through prestress. 

(4) Prestress stability condition is evaluated to determine whether the structure can be 

stabilized through prestress i.e. whether all the mechanisms are first-order 

infinitesimal.  

(5) For brevity, mechanisms that can be stabilized through prestress, i.e. first-order 

infinitesimal mechanisms, are referred as infinitesimal; higher order infinitesimal 

mechanisms are considered as finite. 

This paper is organized as follows: Section 2 defines the main components of the IFME 

through the SVD decomposition of the equilibrium matrix; Section 3 gives the IFM 

formulation; Section 4 discusses IFM limitations with regard to analyzing prestress-stable 

kinematically indeterminate systems. Section 5 gives the formulation for the IFME. In section 

6 examples of kinematically indeterminate structures stabilized through prestress are 

discussed and illustrated. Results obtained with the IFME are benchmarked against the 

methods based on the SFM and product force concept [35], SVD-FM [28], and DM. Section 

7 and 8 conclude the paper.  
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2 Decomposition of the equilibrium matrix  

Consider a pin-jointed structure made of n
e
 elements and n

n
 joints in d-dimensions. The rigid 

body motions of the system are constrained by n
c
 supports hence the number of free degrees 

of freedom is n
f
 = dn

n
  n

c
. The equilibrium conditions are expressed as 

 AF P ,  1 

where 
f en nA  is the structure equilibrium matrix containing the element direction cosines, 

1en F is the element force vector, and 1fn P  is the external load vector. Denote r as the 

rank of the equilibrium matrix A, then the number of self-stress states is s = n
e
 – r and the 

number of mechanism modes is m = n
f
 – r. The equilibrium matrix A can be decomposed 

through SVD in the following terms 

    
T0

0 0

r

r m r s

 
  

 

V
A U U W W ,  2 

where  
f fn n

r m

U U ,  
e en n

r s

W W , and 
f en n

r

V  are the left singular vectors, right 

singular vectors and singular values of A, respectively. 
fn r

r

U  and
fn m

m

U  are the basis 

of the column space ( )T
A  and the left-null space  TA  of the equilibrium matrix, 

respectively. 
en r

r

W  and
en s

s

W   are the basis of the row space  A  and the null 

space  A  of the equilibrium matrix, respectively. Load components lying in the space 

spanned by rU  can be carried by the structure in its initial configuration and they are in 

equilibrium with forces lying in the space spanned by 
en r

r

W . The columns of mU  are m 

linearly independent mechanism modes or in other words nodal displacements which do not 

cause strain (first order deformation) of the elements. Load components lying in the space 

spanned by mU  cannot be equilibrated by the structure in its initial configuration. The 

columns of sW  are s linearly independent self-stress states. For full static and kinematic 

interpretation of the terms of the SVD of the equilibrium matrix, the reader is referred to [28]. 

3 Integrated Force Method (IFM) formulation 

The IFM combines into a single matrix statement the equilibrium equations with s extra 

compatibility equations 

 T

s W e 0 ,  3 
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where T es n

s

W  is the transpose of the self-stress basis. The s compatibility conditions in 

Eq. 3 can be derived from virtual work or by dimply considering the orthogonality between 

the compatible strain e  and the basis of incompatible strains  (  can be interpreted as 

both the self-stress and incompatible strain basis) [28].  The compatible strain e can be 

decomposed into a an elastic part ee = BF  which is caused by the force F, and a non-elastic 

part 0e which is usually caused by lack of fit or thermal strain and it has also been referred as 

eigenstrain [39] 

 0 e BF e ,  4 

where 
e en nB  is the flexibility matrix which for a pin-jointed structure is a diagonal matrix 

whose non-zero entries are 

 
i

ii

i i

L
B

E A
 ,  5 

and Li, Ei, and Ai are the length, Young’s modulus and cross-sectional area of element i, respectively. 

Replacing e in Eq. 3 through Eq. 4 

 T T

0s s W BF W e .  6 

By concatenation of Eq. 1 and Eq. 6 , the governing equation of the IFM is obtained 

 T T

0s s

   
   

      

A P
F

W B W e
,  7 

or in compact form 

  *SF P ,  8 

where 

 
*

T T

0

,  
s s

   
    

      

A P
S P

W B W e
.  9 

In Eq. 8, 
 f en s n 

S and   1*
fn s 

P  are the governing matrix and extended load vector of 

the IFM, respectively. Note that *
P contains the eigenstrain 0e  thus allowing to set directly an 

initial deformation such as that caused by a lack of fit of the elements or alternatively by the 

length change of one or more linear actuators integrated in the structure [34]. 

sW sW
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Because s = n
e
 – r and m = n

f
 – r it follows that n

f
 + s = n

e
 + m and thus 

 e en m n 
S  and 

  1* .
en m 

P  For kinematically determinate systems (m = 0), the governing matrix 
e en nS  

is square with full rank. Under this condition, the element forces F are obtained as 

 1 *F S P .  10 

Once the forces are known, the nodal displacements 1fn U  are obtained as 

  0 U J BF e ,  11 

where  

 
T

ei n



 
   J S ,  12 

contains the first en rows of the transpose of the inverse of S . Eq. 10 and Eq. 11 are the two 

key equations of the IFM to calculate the structural response under static loading for 

kinematically determinate systems. 

4 IFM limitation for prestress-stable kinematically indeterminate systems 

The IFM is able to predict the response of kinematically determinate systems (m = 0) 

efficiently and accurately [25, 30, 40]. However, problems arise if it is adopted to analyze 

kinematically indeterminate systems (m > 0).  

4.1 IFM force computation limitation 

A general load P applied on a kinematically indeterminate system can be decomposed into 

two parts: the load component P
(1) 

lying in the column space of the equilibrium matrix that is 

spanned by rU ; the load component P
(2) 

lying in the left-null space of the equilibrium matrix 

that is spanned by mU . The space spanned by rU  contains all the loads which can be 

equilibrated by the system in its initial configuration [12, 35], which means that the following 

equation admits at least one solution 

    1 1
AF P .  13 

However, the space spanned by mU  contains all the loads which cannot be taken by the 

structure in its initial configuration due to the existence of mechanisms. This means that the 

following equation admits no solution when  2
P 0  

    2 2
AF P .  14 
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This also shows that, in general, the equilibrium equation Eq. 15 admits no solution when 

 2
P 0  

    1 2
  AF P P P .  15 

If T

m U P 0 , P can be equilibrated by the system in its initial configuration; if 
m T

U P 0 , P 

cannot be equilibrated by the system in its initial configuration. Therefore, when the load 

contains components lying in the space spanned by mU  , Eq. 8 cannot be solved for forces. 

4.2 IFM displacement computation limitation 

Because the IFM governing matrix 
 e en m n 

S  is not square when m > 0, Eq. 11 cannot be 

used to compute the displacements. For a kinematically indeterminate system, the 

displacement U can be decomposed into a part Ue caused by element deformations i.e. 

extensional displacement and a part Uk due to inextensional displacements caused by 

infinitesimal mechanisms. That is 

 e k U U U .  16 

The relation between U and the element deformation is 

 T

0 A U BF e .  17 

Eq. 17 can be decomposed into two equations 

 T

0e  A U BF e , 18 

 T

k A U 0 .  19 

Uk can be expressed as the combination of the basis of mechanism modes mU , that is 

 k mU U β ,  20 

where 1mβ  is an arbitrary combination coefficient vector. For this reason, Eq. 17 admits 

infinite solutions.  

5 Extended Integrated Force Method (IFME) formulation 

5.1 Product force 

The product force has been introduced in [35, 14] to compute the stiffness of first-order 

infinitesimal mechanisms stabilized through prestress in a kinematically indeterminate 
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system. Suppose element k is connected by node i and j in a pin-jointed system. For the pre-

stressed configuration, the equilibrium equation in the x-direction of node i is 

 0 0

i j

k ix

k k

x x
F P

L


 ,  21 

where xi and xj are the coordinates in x-direction of node i and j, Lk is the length of element k, 

F0k is the prestress in element k, and P0ix is the load component in x-direction applied on node 

i. Then suppose that the system deforms by imposing the h
th

 inextensional displacement 

h

m hU , where h  is a sufficiently small value to ensure the small displacement assumption 

holds. In the deformed configuration, second-order changes of the element lengths might 

occur. However, since small displacements assumption is applied, second-order deformations 

are neglected and thus element lengths and prestress remain unchanged. The equilibrium 

equation in the x-direction of node i in the deformed configuration is 

 
   , ,

0 0

h h

i m ix h j m jx h h

k ix ix

k k

x U x U
F P P

L

 


  
  ,  22 

where h

ixP  is an additional force, the so called product force or geometric load, that is 

required to satisfy equilibrium in the deformed configuration. Through appropriate prestress, 

this additional force, which arises as the mechanism is displaced, can be employed to 

equilibrate the external load lying in the direction of the inextensional mechanism h

m hU . 

Substituting Eq. 21 in Eq. 22 gives the product of the change of equilibrium matrix h

xA  

times the prestress and the coefficient vector h  

 
, ,

0

h h

m ix m jx h

k h ix

k k

U U
F P

L
 

 
  

 
 .  23 

Collecting Eq. 23 for all degrees of freedom gives 

 
h h

h G P ,  24 

where 

   0

h hG A F ,  25 

and hA  contains the change of the equilibrium matrix terms caused by the inextensional 

displacement of the mechanism h

mU . h
G  is the product force for a unit amplitude of the 



12 

 

mechanism h

mU  and 0F  is the prestress. Collecting Eq. 25 for all the mechanism modes gives 

the product force matrix 

 
1,..., ,...,h m   G G G G .  26 

For a self-equilibrated prestress, i.e. no external load exists, 0F  is expressed as a combination 

of the s independent self-stress states 

 0 sF W α ,  27 

where 1sα  is the self-stress combination coefficient vector. From Eq. 25, h
G  in this case 

can be expressed as 

  h h

sG A Wα .  28 

Define  h

h sQ A W , then the product force matrix G can be expressed as 

    ,..., ,..., ,..., ,...,h h h h h h G Q α Q α Q α Q Q Q Λ ,  29 

where Λ  is a block diagonal matrix whose diagonal entries are the self-stress combination 

coefficients α . Note that Eq. 25 and Eq. 29 are identical for a self-equilibrated prestress. 

Compared to Eq. 29, Eq. 25 uses the prestress 0F  explicitly to express the product force 

instead of the self-stress states and corresponding coefficient factors . 

5.2 Prestress design 

The analysis of a kinematically indeterminate structures generally involves the determination 

of an appropriate prestress to stabilize the system. Although pre-stress stability criteria were 

given in [14, 15, 16], a general and efficient procedure to compute prestress that stabilizes 

kinematically indeterminate systems with multiple self-stress states was not addressed. In this 

section, a general approach that applies to systems with single and multiple self-stress states 

is proposed. 

In order to stabilize a kinematically indeterminate system, all the mechanisms in the system 

should have positive stiffness. To ensure this, the scalar product of a general inextensional 

mechanism mU β  and the corresponding product force vector Gβ  should be positive for any β  

 
T T 10,    and m

m

   β G U β β β 0 ,  30 

which means that the matrix T

mG U  should be positive definite [14] 
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 T

m G U 0 .  31 

If Eq. 31 holds, it means that the mechanisms in the system are all first-order infinitesimal 

and thus the structure can be stabilized through prestress. It has been proven that for small 

deformations T

mG U  is equivalent to the geometric stiffness matrix reduced to the mechanism 

space [36, 41] i.e. the product force could be thought of the stiffness of the mechanism. 

Since prestress is obtained considering no external loads, the task is to obtain a prestress 0F  

which is a suitable combination of the self-stress states through the combination coefficients

α  (Eq. 27) such that T

m G U 0 . This task has been referred as “prestress design” in previous 

works [17, 18, 19]. Recently, Wang and Xu [20] formulated a prestress design process based 

on semi-definite programming which can be solved efficiently through a prima-dual interior 

algorithm. In these studies, the prestress 0F  is treated as the only design variable. Instead in 

this work, both 0F and the eigenstrain 0e (initial element deformation) are treated as design 

variables. This allows to obtain simultaneously the prestress as well as the eigenstrain that 

induce the required prestress. In addition, in case the structure is equipped with an active 

control system, having both 0F and 0e as design variable, allows to obtain the initial actuator 

length changes (i.e. eigenstrain) to stabilize the system (Section 6).  

Following the prestress design method proposed in [20], the process proposed here is 

formulated as a semi-definite programming problem (SDP) 

 

 

 

0

T

,

T

T T

0 0

0 0

0

0

min  Tr

s.t. ,

m

m

s s

L U

L U





  


 





 
  

α e
G U

G U I 0

W BF W e

g F e 0

F F F

e e e

  32 

where the prestress 0F and product force G are expressed through Eq. 27 and Eq. 29, 

respectively. It is clear that since the trace of a square matrix is the sum of its eigenvalues, 

minimizing  TTr m G U  is equivalent to maximizing the sum of the eigenvalues of T

mG U , 

which increases the possibility to obtain a positive definite T

mG U . In the prestress stability 

condition,   is a small positive value (e.g. 0.01  ) to ensure that the minimum eigenvalue 

of T

mG U  is strictly positive and I is an identity matrix. Since no external load is considered, 
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0F  and 0e are related directly through the compatibility conditions expressed in Eq. 6. A  

general linear function  0 0, g F e 0  is introduced to constrain prestress and eigenstrain. For 

example, if prestress and initial deformations of elements i and j are required to be identical, 

then the linear constraints are 0, 0,i jF F  and 0, 0,i je e . Lower and upper bounds for 0F  and 0e  

are denoted as ,L L
F e  and ,U U

F e , respectively, which can be set to account for stress and 

length change limits. In case prestress is introduced through active control, the bounds on 0e

allow to constrain the actuator length changes to induce the prestress 0F . 

Eq. 32 is a SDP model which can be solved globally through a primal-dual interior-point 

algorithm [42]. Note that besides the objective function adopted here, other objectives can 

also be employed according to requirements as long as they can be formulated into linear 

forms with respect to the optimization variables 0F  and 0e . Since the SDP model is convex, if 

Eq. 32 admits a solution, it is the global optimum and hence it means that the structure can be 

stabilized through prestress subject to the considered constraints. If Eq. 32 is infeasible, it 

means that the structure cannot be stabilized through prestress subject to the considered 

constraints.  

The problem stated in Eq. 32 is a general prestress design model that applies to kinematically 

indeterminate structures with single and multiple self-stress states. However, note that Eq. 32 

is a numerical optimization model in which some specific constrains on prestress 0F  and 

initial deformation 0e  are considered. In addition, a small positive value must be set for  to 

ensure that the minimum eigenvalue of T

mG U  is strictly positive. Therefore, infeasibility of 

Eq. 32 might not necessarily mean that the system cannot be stabilized by any prestress, i.e. it 

indicates that there is no prestress that satisfies the assigned constraints within the set 

tolerance for the positive definiteness of T

mG U . That being said, if no constraints on 0F  

and 0e  are assigned and is set to a sufficiently small value, if there is no solution to Eq. 32, 

the system can be practically referred to as ‘not prestress-stable’. 

5.3  IFME governing equation and computation of forces 

A prestress-stable kinematically indeterminate system has two different modes to equilibrate 

an external load: (1) element deformations produce forces that equilibrate the load; and (2) 

inextensional displacements at constant prestress, in which case the load is equilibrated by 

out-of-balance forces arising from the reorientation of the elements i.e. a change of geometry 
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[43, 35]. This out-of-balance force is the product force as defined in Section 5.1. The product 

force can also be thought of as the stiffness of the mechanism [36]. Load components P
(1)

 

lying in the column space of the equilibrium matrix that is spanned by rU  are equilibrated 

through the first mode. Load components P
(2)

 lying in the left-null space of the equilibrium 

matrix that is spanned by mU  can be equilibrated through the second mode (i.e. through 

prestress).  

The equilibrium conditions for the first mode are given directly through the equilibrium 

matrix A (Eq. 1). Recalling Eq. 24, the equilibrium conditions for the second mode are 

expressed as 

  2
Gβ P ,  33 

where 
fn mG  is the product force matrix and 1mβ  is the combination coefficient vector 

of the mechanism modes.  

In order to extend the IFM to the analysis of prestress-stable kinematically indeterminate 

systems, the equilibrium conditions for the second mode are incorporated by combining Eq. 1 

and Eq. 33 

      1 1 2
  AF Gβ P P .  34 

By combining the equilibrium condition Eq. 34 and compatibility condition Eq. 6, a new 

governing equation is obtained 

 T T

0s s

     
     

          

A G F P

W B 0 β W e
,  35 

or 

 * * *S F P ,  36 

where 

 
* *

T ,  
s

   
    
      

A G F
S F

W B 0 β
.  37 

In Eq. 36, 
   *

e en m n m  
S  is the IFME governing matrix, and 

  1*
en m 

F  is a vector 

containing the unknown force F and the coefficient vector . For a prestress-stable 

kinematically indeterminate structure, the m mechanisms are first-order infinitesimal and thus 
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they gain positive stiffness through prestress 0F . The union of the equilibrium matrix A and 

product force matrix G, i.e.  A G , spans  ( )T TA A (which is referred as the joint 

space in [35]), and therefore  A G  has full row rank. By integrating the compatibility 

equations in Eq. 6, the governing matrix *
S  is full-rank and thus it can be inverted. Solving 

Eq. 37 for *
F  

 
1

* * *  


   F S P .  38 

The IFME governing equation allows to compute the structural response of statically and 

kinematically indeterminate systems subject to any arbitrary load including those that have 

components lying in the left-null space of the equilibrium matrix, i.e. loads that without 

appropriate prestress cause instability due to first-order infinitesimal mechanisms. 

5.4 IFME compatibility conditions and computation of displacements 

Eq. 38 yields, besides the element forces F , also the combination coefficient vector of the 

mechanism modes and thus the inextensional displacement Uk can be calculated through 

Eq. 20. Using virtual work, it is possible to prove the orthogonality between the product force 

G and the extensional displacement Ue [35]. Suppose a system in its initial configuration, the 

external load and element force are denoted by P and F, respectively; the extensional 

displacements Ue are compatible with the element elongations e. Then, from virtual work 

 e T T
P U F e .  39 

Suppose that the system deforms by imposing an inextensional displacement 
mU β , where β  

is sufficiently small to ensure that small displacement assumption holds. The inextensional 

displacement does not cause first order element deformations (hence within the small strains 

assumption it does not cause a change of the element forces) but will produce out of balance 

forces i.e. the product force Gβ . Therefore, applying virtual work 

     e m   
T T

P Gβ U U β F e .  40 

Expanding Eq. 40 gives 

        T T

e m e m    
T T T

P U P U β Gβ U Gβ U β F e .  41 

Considering T

m U P 0  and ignoring the higher-order term    m

T
Gβ U β , Eq. 41 becomes  
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  T

e e  
T T

P U Gβ U F e ,  42 

or 

 
T T T

e e   T
P U β G U F e .  43 

Recalling Eq. 39 it follows that 

 T T 0e β G U .  44 

Since β  can take any values, Eq. 44 is equivalent to 

 
e 

T
G U 0 ,  45 

which proves the orthogonality between the product force G and the extensional 

displacement Ue. 

By combining Eq. 18 and Eq. 45, an extended compatibility equation is obtained 

 

T
0

T e

   
   
     

BF eA
U

0G
,  46 

or 

 e HU E ,  47 

where 

 

T
0

T ,
   

    
     

BF eA
H E

0G
.  48 

In Eq. 47, 
 e fn m n 

H  is the IFME compatibility matrix. For a prestress-stable 

kinematically indeterminate system, a unique extensional displacement can be determined 

through Eq. 47. As explained in Section 5.3,  A G  has full row rank, thus  
T

T

T

 
  
  

A
A G

G
 

has full column rank. Accordingly, Ue can be computed as 

 e

U H E ,  49 

where H
+
 is the Moore-Penrose pseudoinverse [44] of matrix H. Finally, the total 

displacement  U (Eq. 16) can be calculated by adding the inextensional displacement 

 m

 U H E U β , 50 
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where β is the combination coefficient vector of the mechanism modes obtained from Eq. 38.  

In addition to using Eq. 49, the transpose of the governing matrix *
S  can be utilized directly 

to calculate the extensional displacement eU  

 * '

e C U E ,  51 

where 
   *

e en m n m  
C  and 

  1'
fn s

e

 
U  are defined as 

 
T

* * '

1

,  
e

e

s

 
     

 

U
C S U

0
.  52 

Because *
S  is full-rank, '

eU  can be calculated directly by 

 
1 T

' * *

e

 

       U C E S E ,  53 

then eU  can be obtained by extracting the first fn  entries of '

eU  and the total displacement 

can be computed as: 

  1
*

f
m

i n



 

   U C E U β , 54 

Eq. 49 and Eq. 53 are equivalent to compute the extensional displacement eU  and Eq. 50 and 

Eq. 54 are equivalent to compute the total displacement U . Eq. 49 is a reduced version of Eq. 

53 and H is a reduced version of the full IFME compatibility matrix 
T

* *   C S . Similar to 

the SFM, the static-kinematic duality between *
S  and *

C  holds.  

5.5 IFME analysis process 

The IFME analysis process is summarized in the block diagram shown in Figure 1. 
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Figure 1 IFME analysis process 

Note that when the extended load vector includes the eigenstrain 0e , the element forces 

obtained through Eq. 38 include the prestress 0F  and the forces 
loadF  caused by the external 

load P  i.e. 
0 load F F F . Similarly, when 0e  is included in Eq. 54 the displacement U  includes 

the initial displacement 0U  caused by 0e  and the displacement 
load e k U U U  caused by the 

external load P  , and therefore the total displacement is 
0 load U U U . 

5.6 On the relation between eigenstrain 0e and prestress 0F  

As explained in 3, the eigenstrain 0e can be employed to model the effect of a non-elastic 

deformation of the elements such as that caused by thermal strains, a lack of fit or 

alternatively by the length change of one or more linear actuators integrated in the structure 

[34]. For this reason, the eigenstrain 0e  can be also employed to cause prestress 0F through an 

initial non-elastic element deformation which involves a change of geometry from the initial 

configuration. For example, assume that L are the element lengths in the intended geometry 

before construction. Through 0e it is possible to obtain the initial element lengths 0 0 L L e  

so that after assembling, prestress 0F  will arise due to a lack of fit. Note that in this case the 

geometry after assembling will be different to the intended geometry. This is particularly 

Step 1 Preliminary analysis 

a) Compute equilibrium matrix A and 

flexibility matrix B 

b) Compute self-stress state matrix W
s
 

and inextensional mechanism matrix 

U
m
 through the SVD of A 

Step 2 Prestress design and build IFME 

governing matrix 

a) Obtain F
0
 and e

0
 as solution of the 

problem stated in Eq. 32 

b) If Eq. 32 admits a solution, compute 

product force G (Eq. 25) and build the 

IFME governing matrix S
*

 (Eq. 37). If 

Eq. 32 admits no solution, the 

structure is not prestress-stable 

Step 3 Compute forces Step 4 Compute displacements 

Use Eq. 54 to compute the total 

displacement (extensional + inextensional) 

caused by the extended load P
*

 

Use Eq. 38 to compute element force F 

and coefficient vector of the mechanism 

modes  under the extended load P
*

 

  
1

*
T

0s

   
            

F P
S

β W e

T 0*

f

e k m

i n



 

   
       

    

BF e
U U U S U β
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useful when the prestress is caused by an active system which is integrated into the structure. 

In this case, prestress 0F  is caused directly through elongation and/or shortening (eigenstrain 

0e ) of linear actuators integrated into the structure,  as it will be shown in Example 4.  

However, if the initial geometry is intended to remain unchanged after the application of 

prestress 0F , the initial element lengths must be assigned differently. For example, suppose 

the required length of the ith element in the intended geometry is iL , then the initial length 0,iL  

and prestress 0,iF  of the ith element are related by 

  0, 0,
i i

i i i

i

E A
L L F

L
  ,  55 

which gives 

 0,

0,

i i i
i

i i i

E A L
L

F E A



.  56 

Pre-elongation and/or pre-shortening is introduced in the elements before assembling in order 

to obtain the required prestress as well as a prescribed geometry through an initial elastic 

deformation of the elements. Note that it is assumed the node positions can be held fixed by a 

rigid falsework so that during assembling the geometry of the structure remains unchanged. 

In this case, Eq. 38 and 54 should be used to obtain forces loadF  and displacement loadU  caused 

by the external load P  only as the eigenstrain 0e  is not included. The total force in the 

elements will still be 0 load F F F  but the total displacement only includes the contribution of 

the external load i.e. loadU U . 

6 Numerical examples 

6.1 Example 1 

Consider a two-dimensional pin-jointed system consisting of two elements and three nodes 

shown in Figure 2(a). A vertical load P is applied at node #2. The system has one state of 

self-stress and one mechanism mode which is the vertical movement of node #2 as indicated 

by dashed lines in Figure 2(b). To benchmark the solution produced by the IFME against the 

analytical solution, loading and element characteristics are identical to those reported in [45]. 

Assume L = 5080 mm, P = 311.38 N, and EA = 564.92 N for the two elements.  
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Figure 2 Example 1, planar pin-jointed system: (a) dimensions and loading, (b) internal mechanism mode 

S1) Preliminary analysis  

The equilibrium matrix A, flexibility matrix B, states of self-stress matrix Ws and mechanism 

matrix Um are 

 
1 1 8.9924 0 1 0 0

,  ,  ,  ,  
0 0 0 8.9924 1 1 1

s m

         
             
         

A B W U P .  57 

Because 
m T

U P 0 , the load P contains component that lies in the left-null space of the 

equilibrium matrix, i.e. load P cannot be equilibrated by the structure in its initial 

configuration. 

S2) Assign prestress and compute IFME governing matrix 

Suppose that a prestress tension F0 = 4448.2 N is applied for both elements as done in [45]. A 

further check through Eq. 31 indicates that this prestress can stabilize the mechanism. Use 

prestress F0 to construct the product force matrix G and the governing matrix *
S  

 
*

1 1 0
0

,   0 0 1.7513
1.7513

8.9924 8.9924 0

 
   

    
    

G S .  58 

S3) Compute forces  

Use Eq. 38 to obtain F
*
 

 
*

0

0

177.80

 
 

  
 
 

F ,  59 

or 

  
0

,  177.80
0

 
   
 

F β .  60 

The external load P does not change the element forces but it excites the mechanism mode.  
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S4) Compute displacements 

Use Eq. 54 to obtain the total (extensional Ue + inextensional kU ) displacement 

 
0 0 0

0 177.80 177.80
e k

     
         

      
U U U .  61 

No element forces are caused by the external load, i.e. the element elastic strain is zero and 

thus the extensional nodal displacement is zero. This is consistent with the forces obtained 

from Eq. 60. 

Results obtained through the IFME are practically identical with those obtained by using the 

methods based on SFM [35] and DM [36]. However, the SVD-FM is not applicable to this 

system. In fact, the nodal displacement obtained through the SVD-FM is a zero vector. This 

is because the SVD-FM does not account for the change of stiffness of the mechanism 

through prestress; thus it cannot give a correct solution in terms of nodal displacements if the 

load contains components that lies in the left-null space of the equilibrium matrix. 

According to the analytical solution given in [45] the vertical displacement of node #2 is 

166.54 mm. The same system has been studied in [46] through geometric nonlinear 

analysis, which shows a very good accordance with the analytical solution. The error of the 

IFME solution with respect to the analytical solution is 6.7%. This is because in the IFME, 

the element lengths are assumed to remain unchanged by the first-order infinitesimal 

displacement. If second order element deformations caused by the inextensional displacement 

are considered, additional forces are developed, which subsequently increase the stiffness of 

the mechanism thus reducing the vertical displacement of node #2. Future work could look 

into an extension of the IFME to geometric non-linear cases.  

6.2 Example 2 

Figure 3(a) shows another example of a two-dimensional pin-jointed system which has one 

state of self-stress and one mechanism mode. The motion caused by the mechanism is 

indicated by dashed lines in Figure 3(b). Assume L = 1.0, P1 = P2 = P3 = 1, P4 = 2, and EA = 

1.0×10
6
 for all the elements. No initial strain or prestress is applied. This system was 

investigated in [28] using the SVD-FM. In this case, it is possible to use the SVD-FM 

because the external load does not excite the mechanism. The load in fact lies in the column 

space of the equilibrium matrix. For this reason, it is not necessary to consider the product 
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force. The response obtained through the IFME is given in Table 1, which is identical to that 

obtained through the SVD-FM. 

 

Figure 3 Example 2, planar pin-jointed system: (a) dimensions and loading, (b) internal mechanism mode 

Table 1 Element force (Fload) and nodal displacement (Uload) caused by external load  

Element Forces Nodal Displacements (×10
4

) 

1 2 3 4 2-x 4-x 2-y 4-y 

0.667 0.333 1.000 2.000 0.800 0.200 0.667 2.000 

Suppose that an additional load P = 0.1 is applied on node #5 in the x-direction. The 

element forces in Table 1, which are caused by the load applied in the first phase, can be 

thought of as prestress to construct the product force matrix. The additional element forces 

and nodal displacements (Table 2), caused by P are computed following the IFME analysis 

process outlined in Section 5.5. 

Table 2 Element force (F) and nodal displacement (U) caused by P 

Element Forces Nodal Displacements 

1 2 3 4 2-x 4-x 2-y 4-y 

0.000 0.000 0.020 0.000 0.040 0.040 0.000 0.000 

The final element forces and nodal displacements are obtained by summing the results in 

Table 1 and Table 2. A benchmark with the results obtained through the methods based on 
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the SFM [35] and DM [36] shows they are practically identical with those obtained through 

the IFME. However, similar to Example 1, the SVD-FM cannot deal with the additional load 

P because this lies in the left-null space of the equilibrium matrix. The solution of the 

second step obtained through the SVD-FM is given in Table 3. Both element forces and nodal 

displacements are different to those given in Table 2. 

Table 3 Element force (F
SVD-FM

) and nodal displacement (U
SVD-FM

) compute through SVD-FM 

Element Forces Nodal Displacements (×10
6

) 

1 2 3 4 2-x 4-x 2-y 4-y 

0.000 0.000 0.050 0.000 0.040 0.010 0.000 0.000 

6.3 Example 3 

The triplex tensegrity tower shown in Figure 4 is considered in this example. The structure is 

made of three identical simplex tensegrity modules one of which is shown in Figure 4(a). The 

structure consists of 12 nodes and 30 elements. The nodal coordinates are given in Table 4. 

Node #1 is fully constrained, node #2 is allowed to move in the x-direction, node #3 is 

allowed to move in the x-y plane, and all the other nodes are free. Considering the symmetry 

of the configuration, the elements are divided into six groups (Table 5). Elements in group 1 

to group 4 are required to be in tension while elements in group 5 and group 6 in 

compression.  The elements in tension have a circular section (diameter = 10.8 mm) with an 

area A = 91.61 mm
2
. The elements in compression have a circular hollow section (dimeter = 

60 mm, thickness = 3 mm) with an area A = 537.21 mm
2
, second moment of area I = 

2.19×10
5
 mm

4
. The Young’s modulus for the elements in compression and tension are E = 

206 GPa and E = 185 GPa, respectively. The stress limit for members in tension and 

compression are reached for a force of 115.43 kN and 166.54 kN, respectively. The Euler 

buckling limit for the members in compression is 230.14 kN. The displacement limit is set to 

Ulimit = 10 mm. 

Three loads in the negative z-direction with the same magnitude P = 1 kN are applied to node 

#10, node #11, and node #12, respectively as shown in Figure 4(c). Preliminary analysis 

(Step 1) indicates that this structure has three mechanism modes (Figure 5) and three 

independent self-stress states. The product m T
U P 0  indicates that the external load P contains 

components lying in the left-null space of the equilibrium matrix. 
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Figure 4 Triplex tensegrity tower: (a) basic simplex tensegrity module; (b) node and element numbers; and (c) 

supports and loading  
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Table 4 Triplex tensegrity tower nodal coordinates (unit mm) 

Node number X Y Z 

1   

2   

3   

4   

5   

6   

7   

8   

9   

10   

11   

12   

Table 5 Triplex tensegrity tower element groups 

Element group 1 2 3 4 5 6 

Element number 1-6 7-12 13-18 19-21 22-27 28-30 

 

Figure 5 Mechanism modes (dashed line) of the triplex tensegrity tower 
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The prestress 0F and corresponding eigenstrain 0e  are calculated through solving the problem 

stated in Eq. 32 (Step 2). Elements in the same group are constrained to have identical 

prestress and eigenstrain. Upper bounds on the absolute values of 0F  and 0e  are set to 100 kN 

and 5 mm, respectively. The problem stated in Eq. 32 admits a solution which is given in 

Table 6, hence the structure is prestress-stable.  

Table 6 Prestress and eigenstrain 

Element group 1 2 3 4 5 6 

Prestress (kN)      

Eigenstrain (mm)      

The prestress 0F  (Table 6) and related product force G  allow to build the IFME governing 

matrix *
S . Element forces (Step 3) and nodal displacement (Step 4) are computed following 

the IFME analysis process outlined in Section 5.5.  

Results obtained through IFME are benchmarked with those from SFM, DM, and SVD-FM. 

Figure 6 show the bar chart of element forces loadF  and nodal displacements loadU  caused by 

external load P, which are computed through Eq. 38 and Eq. 54 without including 0e . Results 

produced by IFME are practically identical to those produced by the SFM and DM. However, 

results obtained through SVD-FM are different especially in terms of displacements which 

are much smaller (they are barely visible in Figure 6 (b)) compared to those produced by the 

other methods. This is because the SVD-FM cannot consider the inextensional displacements 

excited by the external load which in this case are dominant. 

 
(a) Force loadF  caused by external load P 
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(b) Displacement loadU caused by external load P 

Figure 6 Forces and displacements caused by external load obtained through IFME, SFM, DM, and SVD-FM 

Figure 7 shows the bar charts of the total force 
0 load F F F  and the total displacement 

0 load U U U , where 0U  is the initial nodal displacement caused by 0e . Referring to the result 

produced by the IFME, all element forces are within required limits for the admissible stress 

and buckling and the maximum displacement is lower than the required limit. Prestress and 

initial displacement are identical for all methods, thus the results produced by the SVD-FM 

differ primarily because of the contribution of the external load. The total forces obtained 

through SVD-FM are similar to those obtained through the other methods because prestress is 

dominant. However, the total displacements are significantly different to those obtained 

through the other methods because the SVD-FM cannot account for the inextensional 

displacements excited by the external load. 

 

(a) Total force 0 load F F F  
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(b) Total displacement 
0 load U U U  

Figure 7 Total forces and displacements obtained through IFME, SFM, DM, and SVD-FM 

6.4 Example 4 

Consider the pin-jointed structure shown in Figure 8. All the nodes and elements lie in the x-y 

plane. Node #1 is fully constrained, node #2 is allowed to move in the x-direction, node #4 is 

allowed to move in the x-y plane, and node #3 is free. This structure is a class-1 tensegrity (at 

most one element under compression connecting to each joint) [47]. 

 

Figure 8: Pin-jointed structure consisting of four nodes and six elements.  

The bars in tension (i.e. the two bracing elements) and compression (i.e. the four external 

elements) are assumed to have the same cross-sections and material properties as those in 

Example 3. The two bracing elements are equipped with linear actuators which are employed 

to change length in order to control element forces and nodal displacements. Three loads in x, 
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y, and z-direction respectively with the same magnitude P = 1 kN are applied to node #3. The 

displacement limit is set to Ulimit = 10 mm. 

The product m T
U P 0  indicates that the external load P contains components lying in the left-

null space of the equilibrium matrix. This structure has no mechanism in the x-y plane; 

however, it has a mechanism whereby the free node #3 can move out of the x-y plane. The 

structure has one state of self-stress consisting of the two cross-elements in compression and 

the outer elements in tension, or vice versa. The structure is prestress-stable when the two 

cross-elements are in compression and the four outer elements are in tension.  

In this example, prestress is applied directly through actuation, thus the eigenstrain 0e  is 

denoted as the actuator length change 0ΔL . In prestress design (Eq. 32, Step 2), 0ΔL for 

elements 1-4 are constrained to be zero (because they are not active) and 0ΔL for elements 5 

and 6 are required to be identical. In addition, the upper bound for 0ΔL  is set to 5 mm. The 

prestress 0F  and related product force G  allow to build the IFME governing matrix *
S . 

Element forces (Step 3) and nodal displacement (Step 4) are computed following the IFME 

analysis process outlined in Section 5.5. 

The prestress 0F  together with the initial nodal displacement 0U  caused by 0ΔL  are given in 

Table 7. 

Table 7 Prestress F0 and nodal displacement U0 caused by 0ΔL  

Element forces (kN) Nodal displacements (mm) 

1 2 3 4 5 6 2-x 3-x 4-x 3-y 4-y 3-z 

49.25 49.25 49.25 49.25 69.65 69.65  2.91 0.00 2.91 2.91 0.00 

The element forces 
loadF  and nodal displacements 

loadU caused by the external load P are given 

in Table 8. 

Table 8 Element force Fload and nodal displacement Uload caused by external load 

Element forces (kN) Nodal displacements (mm) 

1 2 3 4 5 6 2-x 3-x 4-x 3-y 4-y 3-z 

0.09 0.09 0.09 0.09 1.29 0.13  0.02 0.01 0.01 0.01 20.30 
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The final element forces and nodal displacements (Table 9) are the sum of those caused by 

0ΔL  (Table 7) and those caused by the external load P (Table 8). Results are practically 

identical with those obtained by using the method based on SFM [35] and DM [36]. 

Table 9 Total element force F and nodal displacement U  

Element force change (kN) Nodal displacements change (mm) 

1 2 3 4 5 6 2-x 3-x 4-x 3-y 4-y 3-z 

49.34 49.34 49.34 49.34 68.36 69.78  2.93 0.01 2.92 2.92 20.30 

All element forces are within required limits for the admissible stress and buckling. However, 

the displacement corresponding to the mechanism (3-z) is 20.30 mm which is beyond the 

required limit. Therefore, a further actuation step is employed to reduce the displacement 

within the required limit. Assume a 6 mm L  for the bracing elements, the element force 

change is controlF . The element force and nodal displacement after control is given by 

 
0

0

control load control

control load control

   

   

F F F F

U U U U
.  62 

The product force matrix is updated using F through Eq. 25 and subsequently the IFME 

governing matrices are updated. The element forces and nodal displacements after control are 

given in Table 10. 

Table 10 Element force (Fcontrol) and nodal displacement (Ucontrol) after control 

Element forces (kN) Nodal displacements (mm) 

1 2 3 4 5 6 2-x 3-x 4-x 3-y 4-y 3-z 

108.44 108.44 108.44 108.44 151.95 151.36  6.41 0.01 6.40 6.40 9.23 

The actuator length changes are determined a-priori and thus they might not be optimal in 

terms of control efficacy. Nonetheless, through control, all element forces and nodal 

displacements are within required limits. Some of the element forces and nodal displacements 

increase significantly compared to those before control. The computation of displacements in 

a prestress-stable kinematically indeterminate structure depends on the stiffness of the 

mechanism. The control process adopted here can be thought of as a further prestress which 

increases the force in the elements as well as the stiffness of the mechanism. For this reason, 

the displacement corresponding to the mechanism decreases. However, for compatibility (Eq. 
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18) the non-elastic change of length L also causes an increase in some of the displacements 

after control. 

The element forces and nodal displacements after control obtained through the SVD-FM are 

given in Table 11. It can be seen that the displacement corresponding to the mechanism does 

not change after control; this is because the SVD-FM does not consider the change of the 

stiffness of the mechanism caused by prestress (in this case produced by actuation). 

Table 11 Element force (
SVD FM

control


F ) and nodal displacement (

SVD FM

control


U ) after control 

Element forces (kN) Nodal displacements (mm) 

1 2 3 4 5 6 2-x 3-x 4-x 3-y 4-y 3-z 

108.44 108.44 108.44 108.44 151.95 151.36  6.41 0.01 6.40 6.40 20.30 

7 Discussion 

The IFM was proposed nearly half a century ago and so far it could not be applied to the 

analysis of kinematically indeterminate systems because it does not model the effect of 

prestress on the stiffness of inextensional mechanisms. This paper gives a reformulation and 

extension of the IFM, here named Extended Integrated Force Method (IFME) which is able 

to predict the response of prestress-stable kinematically indeterminate systems with single 

and multiple self-stress states and under arbitrary loading. Compared to other force methods, 

the IFME has some unique advantages. 

7.1 IFME vs SFM 

The IFME adopts the concept of product force to model the stiffness of inextensional 

mechanisms stabilized through prestress similarly to the procedure given in [14, 35] which is 

based on the SFM. However, the SFM requires the choice of redundant elements to determine 

a statically determinate basis structure and therefore it is not suitable for automation and it 

does not generalize well. As concluded by Patnaik [30]: “The IFM is the true force method. 

The SFM can, at best, be considered as a solution technique of the IFM for static analysis, 

and the IFM bypasses the popular concepts of redundants and basis determinant structure of 

the SFM.”  
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7.2 IFME vs SVD-FM 

The SVD-FM proposed in [28] is based on the SVD of the equilibrium matrix, and therefore 

it can only deal with the situations in which equilibrium conditions are described completely 

by Eq. 1. However, as explained in Section 4, if the external load contains components lying 

in the left-null space of the equilibrium matrix (i.e. loads that excite one or more mechanism 

modes), Eq. 1 does not admit any solution. In these situations, SVD-FM cannot produce 

accurate solutions, which has been verified through the numerical examples given in section 

6. This is because the SVD-FM does not consider the effect of prestress on the stiffness of the 

mechanism. In fact, SVD-FM can be proved to be identical to a reduced form of the IFME 

which does not include the product force, see Appendix A.2. 

7.3 IFME vs IFM 

Compared to the IFM, the major improvement of the IFME is the incorporation of the 

product force which allows to compute the structural response of prestress-stable 

kinematically indeterminate systems. For the computation of forces, the IFME is similar to 

the IFM (compare Eq. 35 with Eq. 7). However, for the computation of displacements, the 

IFME uses directly the compatibility matrix in Eq. 46 which has a more intuitive physical 

meaning than Eq. 11. In addition, Eq. 46 also applies to the computation of displacements for 

kinematically determinate systems as explained in Appendix A.3. That is, Eq. 11 in the 

original IFM can be replaced by Eq. 46. Therefore, compared to the IFM, the IFME not only 

applies to the analysis of prestress-stable kinematically indeterminate systems but it also uses 

a simpler formulation to compute the displacements for systems with or without 

kinematically indeterminacy.  

7.4 IFME vs DM 

The displacement method (DM) has been successfully applied to linear analysis of prestress-

stable kinematically indeterminate systems. The main steps of the DM are given in the block 

diagram shown in Figure 9. The comparison between IFME and DM focuses on the analysis 

of statically and kinematically indeterminate structures and therefore the prestress design 

process (Step 2) is included also in the DM workflow. With respect to the IFME, the order of 

force and displacement computation is inverted which is a common difference between force 

and displacement methods. For comparison with the IFME, the external load for the DM is 

extended with the term 1

0


AB e  to include the effect of eigenstrain 0e . The effect of 0e  is 

equivalent to that of a force parallel to the axis of the corresponding element and applied to 
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its end nodes. Comparing with the IFME block diagram in Figure 1, it is clear that all 

operations in both methods can be fully automated.  

Before carrying out an analysis for a given external load P, the key step in the DM is to 

assemble the tangent stiffness matrix 
f fn nK  which consists of material stiffness 

m

f fn nK  and geometric stiffness g

f fn nK . In the IFME the same step is to assemble the 

governing matrix 
   *

e en m n m  
S . Since e fn m n s   , the dimension of *

S  can also be 

expressed as 
   *

f fn s n s  
S .  

 

Figure 9 DM analysis process 

The main differences between IFME and DM governing matrices are:  

1. The difference between the dimensions of 
   *

f fn s n s  
S  and 

f fn nK  depends on 

the number of self-stress states s 

2. *
S  is not symmetric, whereas the tangent stiffness matrix K  is symmetric 

3. *
S  is sparser than tangent stiffness matrix K  

4. *
S  is a better conditioned matrix than the tangent stiffness matrix K  

Step 1 Preliminary analysis and compute 

material stiffness matrix 

Step 2 Prestress design and build DM 

governing matrix 

a) Obtain F
0
 and e

0
 as solution of the 

problem stated in Eq. 32 

b) If Eq. 32 admits a solution, compute 

geometric stiffness matrix K
g
 and 

build DM governing matrix K = K
m
 + 

K
g
. If Eq. 32 admits no solution, the 

structure is not prestress-stable 

Step 3 Compute displacements Step 4 Compute forces 

a) Compute equilibrium matrix A and 

flexibility matrix B 

b) Compute material stiffness matrix 

Compute displacement U caused by the 

extended load 

Use compatibility to compute element 

forces caused by the extended load P
'

  

1 T

m

K AB A

1
'

m g



   U K K P

' 1

0

 P P AB e

 1 T

0

 F B A U e
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From point #1, it follows that for prestress-stable kinematically indeterminate structures, *
S  

has higher dimensions than K  because 0s  . Point 3 regarding the sparsity of *
S was already 

mentioned by Patnaik et al. [40] for the IFM governing matrix. The same applies to IFME 

because the inclusion of the product force G does not change the main body of *
S  which is 

the equilibrium matrix A . Referring to Example 3, the density of *
S is 24.3% while that of K  

is 45.6%. Point #4 was also highlighted in [40] regarding the conditioning of the IFM 

governing matrix. The same applies to IFME because, generally, the condition number of *
S

is much smaller than that of K . Referring to Example 3, the condition number of *
S is 99.8 

while that of K  is 
39.6172 10 . 

With regard to computational complexity, the most demanding operations for IFME and DM 

are given in Table 12. For both methods the computational complexity depends on the 

inherent characteristics of the structure, i.e. en , fn , s, and m. However, the computational 

complexity of the IFME is governed by the SVD of A, while that of the DM is governed by 

the computation of material and geometric stiffness matrices mK  and gK  as well as the 

inversion of the tangent stiffness matrix K . 

Table 12 Computational complexity of IFME vs DM 

Method Operation Computational complexity Example 3 

IFME 

SVD of A     2 2
f e e fn n n n    32 30 54000    

1
* * *  



   F S P
 

  3
fn s     3

30 3 35937    

DM 

1 T

m

K AB A       2 2

max ,e f f en n n n   330 27000   

 T

g  K I D QD       2 2

max ,e f f en n n n   330 27000   

 
1

'm g



 U K K P    3
fn   330 27000   

In general, the computational complexity of IFME and DM is comparable as they are both 

third degree polynomial  3n . From point #1 and point #2 it follows that for prestress-

stable kinematically indeterminate structures,  the inversion of K requires less operations than 

that of *
S . However, with respect to K , generally, *

S has a lower density (i.e. it is sparser) 
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which makes it more efficient in terms of data storage and it has a lower condition number 

which results in a higher accuracy of the inverse and, importantly, of the structure response. 

As a final remark, the IFME produces more information than the DM because the total 

displacement U is decoupled into an extensional eU  and inextensional kU  part, which gives a 

deeper insight into the response of the structure. 

7.5 Nonlinear response 

The formulation presented in this paper is given within the assumption of small strains and 

small displacements. The prestress is assumed not to change after an infinitesimal mechanism 

is excited because mechanisms are assumed to cause no first order deformation of the 

elements. However, it should be noted that the displacement caused by an infinitesimal 

mechanism might be significantly large and thus it might cause a significant deformation of 

the elements. In these situations, the constant prestress assumption generally gives an 

overestimation of the displacements caused by an infinitesimal mechanism. Within the small 

strain assumption, second order deformations are ignored and therefore, generally, the 

stiffness of infinitesimal mechanisms is underestimated.  Accuracy could be improved by 

considering second-order effects for the element length changes [35], i.e. geometric 

nonlinearity, which could be the subject of future work. 

8 Conclusion 

This paper offers a new extension of the Integrated Force Method (IFM) to the analysis of 

prestress-stable statically and kinematically indeterminate systems. The Extended Integrated 

Force Method (IFME) is a systematic and general approach to structural analysis which can 

be also applied to kinematically determinate systems.  

This paper has shown that the IFME is an efficient tool for linear analysis of prestress-stable 

statically and kinematically indeterminate systems such as cable-domes, cable-nets and 

tensegrity structures. Compared to the better known Displacement Method (DM), the IFME 

is a suitable alternative and it offers a deeper insight into the structure response which is 

decoupled into an extensional and an inextensional part for prestress-stable kinematically 

indeterminate systems. Compared to other force methods, the IFME has some unique 

advantages including ease of automation, the ability to model the stiffness of infinitesimal 

mechanisms stabilized through prestress and an intuitive formulation which has a clear 

physical interpretation. In addition, this work has shown that the IFME is a convenient tool 
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for the simulation of force and shape control of kinematically indeterminate adaptive 

structures under static loading. 

Future work could investigate the application of the IFME to carry out stability analysis and 

to compute the dynamic response of prestress-stable kinematically indeterminate structures. 

Future work could also look into applications of the IFME to integrated structure-control 

design for kinematically indeterminate adaptive structures. 
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Appendix A 

A.1  SVD-FM formulation 

The key equations of the SVD-FM are given in this section. Element forces are computed as 

  1 T

r r r s

 F W V U P W η ,  63 

where  is given by 

    
1

1

0s s s r r r


   

 
T T T

η W BW W B WV U P e .  64 

The displacements are computed as 

  1 T

0r r r m

  U U V W BF e U γ .  65 

All terms have already been defined in Section 2 and Section 3. A detailed formulation of the 

SVD-FM is given in [28].  

A.2  Equivalence of the SVD-FM with the reduced form of the IFME 

The IFME governing Eq. 35 reduces to a similar form of the IFM governing Eq. 7 if the 

product force matrix G is taken out. In this case the governing matrix reduces to 
 e en m n 

S

. When the structure is kinematically indeterminate, because of the existence of mechanisms 

(m > 0), S is not a square matrix with full rank but a rectangular matrix with full column 

rank, therefore Eq. 10 cannot be used to calculate the element forces. Instead of using the 

inverse of the governing matrix S, the Moore-Penrose pseudoinverse 
S  could be used to 

obtain a unique solution. That is 

 *F S P .  66 

Next, we prove that the element forces obtained through Eq. 66 are identical to those 

obtained through the SVD-FM, i.e. Eq. 66 is equivalent to Eq. 63. The proof is based on 

Lemma 1, which gives the decomposition of a Moore–Penrose pseudoinverse of a vertically 

partitioned rectangular matrix [48]. Note that the first part of the proof below was given in 

[38] and it is reported in this paper for completeness. 
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Proof:  

Lemma 1. If p nC  and q nD  then: 



  
     

 

C
C ξDC ξ

D
 

where 

   


    
 

ξ I C C D I C C  

Through Lemma 1 and considering Eq. 9, Eq. 66 can be expanded as 

  T
T

0
s

s

 
 

        

P
F A ξ W B A ξ

W e
,  67 

where  

    T

s


    

 
ξ I A A W B I A A .  68 

Through the identity T

s s

 I A A W W  [49] , ξ  can be rewritten as 

  T T T

s s s s s



ξ W W W BW W .  69 

Since  T T

s s s s



W W W W  [49], and owing to the fact that T

s sW BW  is an invertible matrix, ξ

can be rearranged into 

  
1

T

s s s



ξ W W BW .  70 

Expanding Eq. 67 and replacing ξ with Eq. 70 gives 

      
1 1

T T T T

0s s s s s s s s

 
    

  
F A W W BW W B A P W W BW W e .  71 

Using the identity 1 T

r r r

 A W V U  [49], and then tiding up 

      
1

1 T T T 1 T

0r r r s s s s r r r


    

 
F W V U P W W BW W B W V U P e .  72 

Finally, F can be expressed as 

  1 T

r r r s

 F W V U P W η ,  73 

where 
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    
1

T T 1 T

0s s s r r r


   

 
η W BW W B WV U P e .  74 

Eq. 73 is identical to Eq. 63, thus Eq. 66 is equivalent to Eq. 63. Note that the force F 

obtained through Eq. 63 (or Eq. 66) can only equilibrate external loads whose components lie 

in the column space of the equilibrium matrix i.e. with loads that do not excite any 

mechanism mode. 

For the computation of displacements, if the product force is not considered, Eq. 46 reduces 

to 

 T

0e  A U BF e .  75 

For a prestress-stable kinematically indeterminate system, the matrix A
T
 is singular (it is rank 

deficient column wise and row wise), therefore, the extensional displacement Ue cannot be 

uniquely determined through Eq. 75. By using the Moore-Penrose pseudoinverse of matrix 

A
T
, Ue can be expressed as [44] 

       T T T

0e

 

   U A BF e I A A ω   76 

where  is an arbitrary combination coefficient vector. Through the identities    T +



T

A A  

and  T T T

m m



 I A A U U  [49], Eq. 76 can be written as 

  1 T

0e r r r m m

   T
U U V W BF e U U ω .  77 

Let 
m T

U ω γ , then 

  1 T

0e r r r m

  U U V W BF e U γ ,  78 

Eq. 78 is identical to Eq. 65, thus Eq. 75 is equivalent to Eq. 65. For a prestress-stable 

kinematically indeterminate system, γ  can be determined through the orthogonality between 

eU  and product force matrix G, i.e. Eq. 45. Note that the displacement  obtained through Eq. 

65 (or through Eq. 75) only accounts for the part caused by load components that lie in the 

column space of the equilibrium matrix i.e. loads that can be taken by the system in its initial 

configuration. That is, Ue might contain contributions from mechanism modes. However, the 

inextensional part in Ue is not caused by load components that lie in the left null space of the 

equilibrium matrix. For brevity, since Uk (see Section 4.2) contains only inextensional 

components of the displacement, Ue has been denoted as extensional in the IFME formulation 

(Section 5).  
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In addition, Eq. 75 also applies to kinematically determinate systems (m = 0) in which the 

transpose of the equilibrium matrix A
T
 has full column rank thus  T T



I A A . For this 

reason, the displacement U in a kinematically determinate system can be directly calculated 

as 

    T

0



 U A BF e . 79 

  ■ 

A.3  Equivalence of the IFM to the reduced IFME for the analysis of kinematically 

determinate systems 

For a kinematically determinate system (m = 0), the product force matrix G does not exist, 

thus the governing equation Eq. 35 of the IFME reduces to Eq. 7, which proves immediately 

the equivalence of the governing equations of the two methods for kinematically determinate 

systems. 

For the calculation of displacements, in order to show that Eq. 79 is equivalent to Eq. 11, it is 

sufficient to prove that  T


J A . Recalling Lemma 1 in Eq. 67, Eq. 11 can be rewritten as 

    
T

T

0s

    
 

U A ξ W B A ξ BF e ,  80 

where ξ is given by Eq. 68. Expanding Eq. 80 and replacing ξ with Eq. 68 gives 

        
T

1 1
T T T

0s s s s s s s

 
    

  
U A W W BW W B A W W BW BF e .  81 

By taking the first n
d
 rows of  

T
1

S , J can be expressed as 

    
T

1
T T

s s s s


   

  
J A W W BW W B A .  82  

Substituting Eq. 82 into Eq. 11 

      
T

1
T T

0s s s s


    

  
U A W W BW W B A BF e .  83 

Considering the compatibility conditions in Eq. 3  T

0s  W e BF 0 , the terms containing T

sW

vanish and therefore Eq. 83 reduces to 

    
T

+

0 U A BF e .  84 
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Eq. 84 is equivalent to Eq. 11 and since    T +



T

A A  Eq. 79 is equivalent to Eq. 11. ■  
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